视觉任务中变形金刚的兴起不仅可以推进网络骨干设计,而且还启动了一个全新的页面,以实现端到端的图像识别(例如,对象检测和泛型分段)。源自自然语言处理(NLP)的变压器体系结构,包括自我注意力和交叉注意力,有效地学习了序列中元素之间的远距离相互作用。但是,我们观察到,大多数现有的基于变压器的视觉模型只是从NLP中借用了这个想法,忽略了语言和图像之间的关键差异,尤其是空间扁平的像素特征的极高序列长度。随后,这阻碍了像素特征和对象查询之间的交叉注意力学习。在本文中,我们重新考虑像素和对象查询之间的关系,并建议将交叉注意学习作为一个聚类过程进行重新重新制定。受传统K-均值聚类算法的启发,我们开发了K-Means面膜Xformer(Kmax-Deeplab)进行细分任务,这不仅可以改善最先进的艺术品,而且享有简单而优雅的设计。结果,我们的Kmax-Deeplab在Coco Val设置上以58.0%的PQ实现了新的最先进的性能,而CityScapes Val设置为68.4%PQ,44.0%AP和83.5%MIOU,而无需测试时间增加或外部数据集。我们希望我们的工作能够阐明设计为视觉任务量身定制的变压器。代码和型号可在https://github.com/google-research/deeplab2上找到
translated by 谷歌翻译
我们提出了聚类蒙版变压器(CMT-DeepLab),这是一种基于变压器的框架,用于围绕聚类设计的泛型分割。它重新考虑了用于分割和检测的现有变压器架构;CMT-DeepLab认为对象查询是群集中心,该中心填充了应用于分割时将像素分组的作用。群集通过交替的过程计算,首先通过其功能亲和力将像素分配给簇,然后更新集群中心和像素功能。这些操作共同包含聚类蒙版变压器(CMT)层,该层产生了越野器的交叉注意,并且与最终的分割任务更加一致。CMT-DeepLab在可可Test-DEV集中实现了55.7%的PQ的新最先进的PQ,可显着提高先前ART的性能。
translated by 谷歌翻译
为视频中的每个像素分配语义类和跟踪身份的任务称为视频Panoptic分段。我们的工作是第一个在真实世界中瞄准这项任务,需要在空间和时间域中的密集解释。由于此任务的地面真理难以获得,但是,现有数据集是合成构造的或仅在短视频剪辑中稀疏地注释。为了克服这一点,我们介绍了一个包含两个数据集,Kitti-Step和Motchallenge步骤的新基准。数据集包含长视频序列,提供具有挑战性的示例和用于研究长期像素精确分割和在真实条件下跟踪的测试床。我们进一步提出了一种新的评估度量分割和跟踪质量(STQ),其相当余额平衡该任务的语义和跟踪方面,并且更适合评估任意长度的序列。最后,我们提供了几个基线来评估此新具有挑战性数据集的现有方法的状态。我们已将我们的数据集,公制,基准服务器和基准公开提供,并希望这将激发未来的研究。
translated by 谷歌翻译
In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up methods that can achieve comparable performance of two-stage methods while yielding fast inference speed. In particular, Panoptic-DeepLab adopts the dual-ASPP and dual-decoder structures specific to semantic, and instance segmentation, respectively. The semantic segmentation branch is the same as the typical design of any semantic segmentation model (e.g., DeepLab), while the instance segmentation branch is class-agnostic, involving a simple instance center regression. As a result, our single Panoptic-DeepLab simultaneously ranks first at all three Cityscapes benchmarks, setting the new state-of-art of 84.2% mIoU, 39.0% AP, and 65.5% PQ on test set. Additionally, equipped with MobileNetV3, Panoptic-DeepLab runs nearly in real-time with a single 1025 × 2049 image (15.8 frames per second), while achieving a competitive performance on Cityscapes (54.1 PQ% on test set). On Mapillary Vistas test set, our ensemble of six models attains 42.7% PQ, outperforming the challenge winner in 2018 by a healthy margin of 1.5%. Finally, our Panoptic-DeepLab also performs on par with several topdown approaches on the challenging COCO dataset. For the first time, we demonstrate a bottom-up approach could deliver state-of-the-art results on panoptic segmentation.
translated by 谷歌翻译
Recent object detection models for infrared (IR) imagery are based upon deep neural networks (DNNs) and require large amounts of labeled training imagery. However, publicly-available datasets that can be used for such training are limited in their size and diversity. To address this problem, we explore cross-modal style transfer (CMST) to leverage large and diverse color imagery datasets so that they can be used to train DNN-based IR image based object detectors. We evaluate six contemporary stylization methods on four publicly-available IR datasets - the first comparison of its kind - and find that CMST is highly effective for DNN-based detectors. Surprisingly, we find that existing data-driven methods are outperformed by a simple grayscale stylization (an average of the color channels). Our analysis reveals that existing data-driven methods are either too simplistic or introduce significant artifacts into the imagery. To overcome these limitations, we propose meta-learning style transfer (MLST), which learns a stylization by composing and tuning well-behaved analytic functions. We find that MLST leads to more complex stylizations without introducing significant image artifacts and achieves the best overall detector performance on our benchmark datasets.
translated by 谷歌翻译
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant down-scaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with 3 orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.
translated by 谷歌翻译
State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal policies. To answer the open question on the importance of magnitude ranges for each augmentation operation, we introduce RangeAugment that allows us to efficiently learn the range of magnitudes for individual as well as composite augmentation operations. RangeAugment uses an auxiliary loss based on image similarity as a measure to control the range of magnitudes of augmentation operations. As a result, RangeAugment has a single scalar parameter for search, image similarity, which we simply optimize via linear search. RangeAugment integrates seamlessly with any model and learns model- and task-specific augmentation policies. With extensive experiments on the ImageNet dataset across different networks, we show that RangeAugment achieves competitive performance to state-of-the-art automatic augmentation methods with 4-5 times fewer augmentation operations. Experimental results on semantic segmentation, object detection, foundation models, and knowledge distillation further shows RangeAugment's effectiveness.
translated by 谷歌翻译
Language models (LMs) often generate incoherent outputs: they refer to events and entity states that are incompatible with the state of the world described in their inputs. We introduce SituationSupervision, a family of approaches for improving coherence in LMs by training them to construct and condition on explicit representations of entities and their states. SituationSupervision has two components: an auxiliary situation modeling task that trains models to predict state representations in context, and a latent state inference procedure that imputes these states from partially annotated training data. SituationSupervision can be applied to both fine-tuning (by supervising LMs to encode state variables in their hidden representations) and prompting (by inducing LMs to interleave textual descriptions of entity states with output text). In both cases, SituationSupervision requires only a small number of state annotations to produce major coherence improvements (between 4-11%), showing that standard LMs can be sample-efficiently trained to model not just language but the situations it describes.
translated by 谷歌翻译
A reduced order model of a generic submarine is presented. Computational fluid dynamics (CFD) results are used to create and validate a model that includes depth dependence and the effect of waves on the craft. The model and the procedure to obtain its coefficients are discussed, and examples of the data used to obtain the model coefficients are presented. An example of operation following a complex path is presented and results from the reduced order model are compared to those from an equivalent CFD calculation. The controller implemented to complete these maneuvers is also presented.
translated by 谷歌翻译
Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?).
translated by 谷歌翻译